

National University of Engineering (UNI)

School of Computer Science Sillabus 2023-I

1. COURSE

CS351. Topics in Computer Graphics (Elective)

2. GENERAL INFORMATION

2.1 Course 2.2 Semester 2.3 Credits 2.4 Horas	: : :	9^{no} Semestre.
2.5 Duration of the period2.6 Type of course2.7 Learning modality2.8 Prerrequisites	:	16 weeks Elective Blended

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

In this course you can delve into any of the topics Mentioned in the area of Graphics Computing (Graphics and Visual Computing - GV).

This course is designed to perform some advanced course suggested by the ACM / IEEE curriculum. [Hug+13; HB90]

5. GOALS

- That the student uses computer techniques Graphs that involve complex data structures and algorithms.
- That the student apply the concepts learned to create an application about a real problem.
- That the student investigate the possibility of creating a new algorithm and / or new technique to solve a real problem

6. COMPETENCES

- 1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions. (Usage)
- 6) Apply computer science theory and software development fundamentals to produce computing-based solutions. (Usage)

7. TOPICS

Competences Expected:			
Topics	Learning Outcomes		
• CS355. Advanced Computer Graphics	• Advanced Topics on Computer Graphics		
• CS356. Computer animation			
• CS313. Geometric Algorithms			
• CS357. visualization			
• CS358. Virtual reality			
• CS359. Genetic algorithms			

8. WORKPLAN

8.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

8.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

8.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

9. EVALUATION SYSTEM

******** EVALUATION MISSING *******

10. BASIC BIBLIOGRAPHY

[HB90] Donald Hearn and Pauline Baker. Computer Graphics in C. Prentice Hall, 1990.

[Hug+13] John F. Hughes et al. Computer Graphics - Principles and Practice 3rd Edition. Addison-Wesley, 2013.