

National University of Engineering (UNI)

School of Computer Science Sillabus 2023-I

1. COURSE CS262. Machine learning (Elective)

2. GENERAL INFORMATION 2.1 Course 2.2 Semester 2.3 Credits 2.4 Horas	::	CS262. Machine learning 7 ^{mo} Semestre. 4 2 HT; 4 HP;
2.5 Duration of the period2.6 Type of course2.7 Learning modality2.8 Prerrequisites	: : :	16 weeks Elective Blended CS261. Intelligent Systems. $(6^{th}~{\rm Sem})$ CS261. Intelligent Systems. $(6^{th}~{\rm Sem})$

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

Write justification for this course here ...

5. GOALS

- Write your first goal here.
- Write your second goal here.
- Just in case you need more goals write them here

6. COMPETENCES

1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions. (Familiarity)

7. TOPICS

Unit 1: title for the unit goes here (5) Competences Expected:			
• Topic1	• Learning outcome1 [Levelforthislearningoutcome].		
• Topic2	• Apply computing in complex problems [Usage].		
• Topic3	• Create a search engine [Assessment].		
	• Study data structures [Familiarity].		
Readings : [Bibitem1], [Bibitem2]			

Unit 2: another unit goes here (1) Competences Expected:				
Topics	Learning Outcomes			
• Topic1	• Learning outcome xyz [Levelforthislearningout- come].			
Readings : [Bibitem3], [Bibitem1]				

8. WORKPLAN

8.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

8.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

8.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

9. EVALUATION SYSTEM

10. BASIC BIBLIOGRAPHY