San Pablo Catholic University (UCSP) Undergraduate Program in Computer Science SILABO

Universidad Católica San Pablo

CS403. Capstone Project II (Mandatory)

1. General information

1.1 School : Ciencia de la Computación 1.2 Course : CS403. Capstone Project II

1.3 Semester : 9^{no} Semestre.

1.4 Prerrequisites : CS402. Capstone Project I. (8^{th} Sem)

1.5 Type of course: Mandatory1.6 Learning modality: Virtual1.7 Horas: 2 HT; 2 HP;

1.8 Credits : 3

1.9 Plan : Plan Curricular 2016

2. Professors

Lecturer

• Graciela Lecireth Meza Lovón <gmezal@ucsp.edu.pe>

- PhD in Ciencia de la Computación, Universidad Nacional San Agustín, Perú, 2016.
- MSc in Ciencia de la Computación, UFMS-MS, Brasil, 2007.
- Juan Carlos Gutiérrez Cáceres < jcgutierrezc@ucsp.edu.pe>
 - PhD in Ciencia de la Computación, Universidad Nacional de San Agustín, Perú, 2013.
 - MSc in Ciencia de la Computación, ICMC-USP, Brasil, 2003.
- Manuel Loaiza Fernandez <meloaiza@ucsp.edu.pe>
 - PhD in Informatica, Pontificia Universidad Católica do Rio de Janeiro (PUC-RIO), Brasil, 2009.
 - MSc in Informatica, Pontificia Universidad Católica do Rio de Janeiro (PUC-RIO), Brasil, 2005.
- Christian Jorge Delgado Polar <cjdelgado@ucsp.edu.pe>
 - MSc in Ciencia de la Computación, DCC-UFMG, Brasil, 2007.

3. Course foundation

This course aims at the student to conclude his thesis project.

4. Summary

1. Thesis project 2. Thesis progress

5. Generales Goals

- That the student is in the capacity to formally present his thesis project with the theoretical framework and complete bibliographic survey.
- That the student master the state of the art of his area of research.
- The deliverables of this course are:

Avance parcial: Thesis plan progress including motivation and context, problem definition, objectives, schedule of activities up to the final thesis project and the state of the art of the topic addressed.

Final: Complete thesis plan and advancement of Thesis including theoretical framework chapters, related works and preliminary (formal or statistical) results oriented to your thesis topic.

6. Contribution to Outcomes

This discipline contributes to the achievement of the following outcomes:

- 1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions. (Assessment)
- 2) Design, implement and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline. (Assessment)
- 3) Communicate effectively in a variety of professional contexts. (Assessment)
- 4) Recognize professional responsabilities and make informed judgments in computing practice based on legal and ethical principles. (Assessment)
- 5) Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline. (Assessment)
- 6) Apply computer science theory and software development fundamentals to produce computing-based solutions.

 (Assessment)
- 7) Develop computational technology for the well-being of all, contributing with human formation, scientific, technological and professional skills to solve social problems of our community. (Assessment)

7. Content

Competences:		
Content	Generales Goals	
• Thesis project.	 Description of the format used by the University for the thesis[Assessment] Conclude the thesis project plan[Assessment] Present the state of the art thesis topic(50%)[Assessment] 	

UNIT 2: Thesis progress (30) Competences:		
Content	Generales Goals	
• Thesis Progress.	 Description of the format used by the University for the thesis[Assessment] Conclude the chapter of the theoretical framework of the Thesis[Assessment] 	
	• Complete the chapter on related works(35%)[Assessment]	
	• Plan, develop and present results (formal or statistical) of experiments oriented to your thesis topic (35%)[Assessment]	

- 8. Methodology
- 1. El profesor del curso presentará clases teóricas de los temas señalados en el programa propiciando la intervención de los alumnos.

- 2. El profesor del curso presentará demostraciones para fundamentar clases teóricas.
- 3. El profesor y los alumnos realizarán prácticas
- 4. Los alumnos deberán asistir a clase habiendo leído lo que el profesor va a presentar. De esta manera se facilitará la comprensión y los estudiantes estarán en mejores condiciones de hacer consultas en clase.

9. Assessment Theory Sessions:

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

Practical Sessions:

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

Evaluation System:

The final grade is obtained through of:

CONTINUOUS ASSESMENT	EVALUATIONS
Continuous assessment 1 : 10 %	Midterm Exam : 10 %
Continuous assessment 2 : 10%	Final Exam : 70 %
20%	80%

Where:

Continuous Assessment: It includes group work, active participation in class, exercise test.

- Continuos assessment 1 (weeks 1 9)
- \bullet Continuos assesment 2 (weeks 10 17)

To pass the course you must obtain 11.5 or more in the final grade.

References

Association for Computing Machinery (2008). Digital Libray. http://portal.acm.org/dl.cfm. Association for Computing Machinery.

CiteSeer.IST (2008). Scientific Literature Digital Libray. http://citeseer.ist.psu.edu. College of Information Sciences and Technology, Penn State University.

IEEE-Computer Society (2008). Digital Libray. http://www.computer.org/publications/dlib. IEEE-Computer Society.