
Peruvian Computing Society (SPC)
School of Computer Science

Sillabus 2021-I

1. COURSE
CS342. Compilers (Mandatory)

2. GENERAL INFORMATION
2.1 Credits : 4
2.2 Theory Hours : 2 (Weekly)
2.3 Practice Hours : 2 (Weekly)
2.4 Duration of the period : 16 weeks
2.5 Type of course : Mandatory
2.6 Modality : Face to face
2.7 Prerrequisites : CS211. Theory of Computation. (4th Sem)

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE
That the student knows and understands the concepts and fundamental principles of the theory of compilation to realize
the construction of a compiler

5. GOALS

• Know the basic techniques used during the process of intermediate generation, optimization and code generation.

• Learning to implement small compilers.

6. COMPETENCES

a) An ability to apply knowledge of mathematics, science. (Assessment)

b) An ability to design and conduct experiments, as well as to analyze and interpret data. (Assessment)

j) Apply the mathematical basis, principles of algorithms and the theory of Computer Science in the modeling and design
of computational systems in such a way as to demonstrate understanding of the equilibrium points involved in the
chosen option. (Assessment)

7. SPECIFIC COMPETENCES

a2) Use logical propositions in an orderly manner. ()

a4) Apply efficient techniques for solving computer problems. ()

a6) Apply finite-state machine and automaton techniques in the resolution of computer problems. ()

a7) Apply techniques and knowledge of computer architecture for the generation and optimization of code. ()

b1) Identify and efficiently apply various algorithmic strategies and data structures for the solution of a problem given
certain space and time constraints. ()

j2) Apply graph and tree theory for optimization and problem solving ()

8. TOPICS

1

Unit 1: Program Representation (5)
Competences Expected: a,b
Topics Learning Outcomes

• Programs that take (other) programs as input such
as interpreters, compilers, type-checkers, documen-
tation generators

• Abstract syntax trees; contrast with concrete syntax

• Data structures to represent code for execution,
translation, or transmission

• Just-in-time compilation and dynamic recompilation

• Other common features of virtual machines, such as
class loading, threads, and security.

• Explain how programs that process other programs
treat the other programs as their input data [Famil-
iarity]

• Describe an abstract syntax tree for a small language
[Familiarity]

• Describe the benefits of having program representa-
tions other than strings of source code [Familiarity]

• Write a program to process some representation of
code for some purpose, such as an interpreter, an
expression optimizer, or a documentation generator
[Familiarity]

• Explain the use of metadata in run-time representa-
tions of objects and activation records, such as class
pointers, array lengths, return addresses, and frame
pointers [Familiarity]

• Discuss advantages, disadvantages, and difficulties of
just-in-time and dynamic recompilation [Familiarity]

• Identify the services provided by modern language
run-time systems [Familiarity]

Readings : [Lou04b]

2

Unit 2: Language Translation and Execution (10)
Competences Expected: a,b,j
Topics Learning Outcomes

• Interpretation vs. compilation to native code vs.
compilation to portable intermediate representation

• Language translation pipeline: parsing, optional
type-checking, translation, linking, execution

– Execution as native code or within a virtual ma-
chine

– Alternatives like dynamic loading and dynamic
(or “just-in-time”) code generation

• Run-time representation of core language constructs
such as objects (method tables) and first-class func-
tions (closures)

• Run-time layout of memory: call-stack, heap, static
data

– Implementing loops, recursion, and tail calls

• Memory management

– Manual memory management: allocating, de-
allocating, and reusing heap memory

– Automated memory management: garbage col-
lection as an automated technique using the no-
tion of reachability

• Distinguish a language definition (what constructs
mean) from a particular language implementation
(compiler vs interpreter, run-time representation of
data objects, etc) [Assessment]

• Distinguish syntax and parsing from semantics and
evaluation [Assessment]

• Sketch a low-level run-time representation of core
language constructs, such as objects or closures [As-
sessment]

• Explain how programming language implementa-
tions typically organize memory into global data,
text, heap, and stack sections and how features such
as recursion and memory management map to this
memory model [Assessment]

• Identify and fix memory leaks and dangling-pointer
dereferences [Assessment]

• Discuss the benefits and limitations of garbage col-
lection, including the notion of reachability [Assess-
ment]

Readings : [Aho+11], [Lou04a], [App02], [TS98]

Unit 3: Syntax Analysis (10)
Competences Expected: a,b,j
Topics Learning Outcomes

• Scanning (lexical analysis) using regular expressions

• Parsing strategies including top-down (e.g., recursive
descent, Earley parsing, or LL) and bottom-up (e.g.,
backtracking or LR) techniques; role of context-free
grammars

• Generating scanners and parsers from declarative
specifications

• Use formal grammars to specify the syntax of lan-
guages [Assessment]

• Use declarative tools to generate parsers and scan-
ners [Assessment]

• Identify key issues in syntax definitions: ambiguity,
associativity, precedence [Assessment]

Readings : [Aho+11], [Lou04a], [App02], [TS98]

3

Unit 4: Compiler Semantic Analysis (15)
Competences Expected: a,b,j
Topics Learning Outcomes

• High-level program representations such as abstract
syntax trees

• Scope and binding resolution

• Type checking

• Declarative specifications such as attribute gram-
mars

• Implement context-sensitive, source-level static anal-
yses such as type-checkers or resolving identifiers to
identify their binding occurrences [Assessment]

• Describe semantic analyses using an attribute gram-
mar [Assessment]

Readings : [Aho+11], [Lou04a], [App02], [TS98]

Unit 5: Code Generation (20)
Competences Expected: a,b,j
Topics Learning Outcomes

• Procedure calls and method dispatching

• Separate compilation; linking

• Instruction selection

• Instruction scheduling

• Register allocation

• Peephole optimization

• Identify all essential steps for automatically convert-
ing source code into assembly or other low-level lan-
guages [Assessment]

• Generate the low-level code for calling func-
tions/methods in modern languages [Assessment]

• Discuss why separate compilation requires uniform
calling conventions [Assessment]

• Discuss why separate compilation limits optimiza-
tion because of unknown effects of calls [Assessment]

• Discuss opportunities for optimization introduced by
naive translation and approaches for achieving opti-
mization, such as instruction selection, instruction
scheduling, register allocation, and peephole opti-
mization [Assessment]

Readings : [Aho+11], [Lou04a], [App02], [TS98]

9. WORKPLAN
9.1 Methodology
Individual and team participation is encouraged to present their ideas, motivating them with additional points in the

different stages of the course evaluation.
9.2 Theory Sessions
The theory sessions are held in master classes with activities including active learning and roleplay to allow students

to internalize the concepts.

9.3 Practical Sessions
The practical sessions are held in class where a series of exercises and/or practical concepts are developed through

problem solving, problem solving, specific exercises and/or in application contexts.

10. EVALUATION SYSTEM
********* EVALUATION MISSING ********

11. BASIC BIBLIOGRAPHY

[Aho+11] Alfred Aho et al. Compilers Principles Techniques And Tools. 2nd. ISBN:10-970-26-1133-4. Pearson, 2011.

[App02] A. W. Appel. Modern compiler implementation in Java. 2.a edición. Cambridge University Press, 2002.

4

[Lou04a] Kenneth C. Louden. Compiler Construction: Principles and Practice. Thomson, 2004.

[Lou04b] Kenneth C. Louden. Lenguajes de Programacion. Thomson, 2004.

[TS98] Bernard Teufel and Stephanie Schmidt. Fundamentos de Compiladores. Addison Wesley Iberoamericana, 1998.

5

